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ABSTRACT A 

Two methods are presented for calculating the d+amic damping 
parameter, Cmn, + Cmi, from a novel wind tunnel free-flight technique 
being developed at the Jet Propulsion Laboratory (JPL). The two 
methods, which are applicable to nonlinear, high angle-of-attack mo- 
tion, are: (a)  a computer method for nonplanar, nonsymmetrical 
motion requiring iterations, and (b  ) a noncomputer solution applicable 
when the model exhibits planar motion. Both methods assume that the 
static aerodynamic coefficients are known. The basic hypothesis of the 
planar solution is that the second-order effects can be determined by 
assuming that the instantaneous oscillatory frequency is a function of a 
nonlinear pitching moment of the form M sin ( k  cy). Both methods are 
applied to representative problems, and soiutions using &e $0 luxnr 
method are compared with results from the computer program. rt 

1. INTRODUCTION 

The aerodynamic forces acting on a body can be sepa- 
rated into two groups: static forces, dependent only upon 
the angle-of-attack, and forces resulting from the pitch- 
ing velocity and vertical acceleration (Ref. 1). The 
contribution of the forces due to motion to the total 
aerodynamic forces is, generally, quite small. However, 
their effect on the total motion is greatly magnified if 
the body is in a negative dynamic pressure gradient 
(dq/dt < 0). An important example of this effect occurs 
when a vehicle enters a planetary atmosphere. During 
the first phase of entry, the vehicle experiences an in- 
creasing dynamic pressure gradient which continually 
strengthens the aerodynamic static restoring moment 
(causing a decrease in the amplitude of oscillation). 
When the vehicle speed has decreased to about 0.6 of 
the initial velocity, a reversal occurs, and the vehicle is 
influenced by a decreasing dynamic pressure gradient. 
The static restoring moment becomes weaker with each 
cycle of oscillation and, if it were the only restoring 

moment acting, the amplitude of oscillation would in- 
crease in order to balance the energies. It is during this 
phase of entry that the stability derivatives due to the 
pitching velocity and vertical acceleration have a dispro- 
portionately large effect on the amplitude of oscillation 
(Refs. 2 and 3). 

At the present time, these stability derivatives are experi- 
mentally obtained either by firing models in a ballistic 
range or using bearing-mounted and flexure-mounted 
forced and freely oscillating models in a wind tunnel. The 
range technique is limited to small angles-of-attack be- 
cause of model launch problems and the assumptions of 
linearity in the data analysis. Also, for the blunt-type re- 
entry bodies, which intrinsically have small stability deriv- 
atives due to motion, the resultant accuracies are about the 
size of the derivatives. The wind tunnel technique of sup- 
porting the model on a bearing or flexure yields question- 
able results below Mach 3. Tests have shown that at the 

1 
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lower Mach numbers, the sting as well as the base can in- 
fluence the damping; consequently, the presence of a sting 
casts suspicion upon the data. In general, the effect of the 
sting on damping data appears to diminish above Mach 3. 
However, this must be verified for each configuration 
before the influence can be neglected. The flexure- 
mounted technique yields the damping at a particular 
angle-of-attack as the model oscillates through a very 
small angular excursion from the mean value. The 
validity of using this type of data for a body oscillating 
through a large angle-of-attack range (large perturba- 
tions) is questionable, since the flexure data is the result 
of small perturbations. The bearing technique can dupli- 
cate the larger amplitudes of oscillation, but model con- 
struction problems limit the amplitude to about 20 deg. 
In addition, bearing damping itself must always be 
considered when this type of apparatus is used. 

Another technique is currently being developed at 
JPL which encompasses most of the advantages of both 
the conventional ballistic range and wind tunnel tech- 
niques and retains few of the disadvantages. Briefly, the 
technique is as follows: Models are suspended on a pre- 
loaded vertical wire in the wind tunnel at an initial 
angle-of-attack. After tunnel flow is established, an addi- 
tional load is applied which ruptures the wire, placing 

2 

the model in free-flight1 (Ref. 4). The motion is recorded 
by means of a high-speed 35-mm Fastax camera, operat- 
ing at about 4000 frames/sec, focused on the vertical 
plane through the tunnel side windows. The prime model 
motion occurs in a vertical plane parallel to the wind. 
Motion, as seen in a horizontal plane parallel to the wind, 
is transcribed simultaneously into the vertical plane by 
means of a pair of mirrors at the top and bottom of the 
wind tunnel (each at a 45-deg angle). 

Figure 1 shows a representative sequence of photo- 
graphs of a model in free-flight. Notice that the hori- 
zontal motion is visible in the bottom of each frame and 
that there is essentially no yawing. From this photo- 
graphic history, the vertical angular position was deter- 
mined as a function of time. This is plotted in Fig. 2. It is 
the purpose of this report to present methods for obtain- 
ing the stability derivatives from the motion history 
data obtained with the wind tunnel free-flight testing 
technique. 

'Even before this technique is perfected it is being superseded by 
a more sophisticated method where the model is launched up- 
stream with a pneumatic gun. By carefully controlling the launch 
thrust the model can be made to go to the edge of the viewing 
window and return, yielding twice as much information as the 
wire release. 
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FRAME 116 FRAME 122 

FRAME 118 FRAME 124 

FRAME 120 FRAME 126 - _. 

Fig. 1. Model in free-flight 

3 
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TIME, sec x 103 

Fig. 2. Vertical angular position of model shown in Fig. 1 

4 
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11. BASIS OF ANALYSIS 

A. Axes Systems 

The sequence of photographs in Fig. 1 describes the 
motionzf %e Eodel with respect to a tunnel-fixed axes 
system XT, YT, ZT, which is essentially an inertial system. 
This system, however, is not well suited for analysis; 
instead, a medium-fixed syAteE fl be the basis for all 
further development. Led XAY,,Z be a set of Cartesian 
coordinates parallel to XT, &, ZT anctraveling parallel 
to the tunnel centerline at rate V,.2 X is parallel to the 
tunnel centerline, toward the oncoming wind. and z" 
are to the right and down, respectively (see Fig. 3). 
X, Y, Z will denote the position of the modAel center-of- 
mass with respect tcth& sptem, and fi, ?, Z will denote 
unit vectors in the X, Y, 2 directions. A parallel system 
X,, Y,, Z,, fixed at the model center-of-mass will also 
be employed. At time zero, the &re axes system =e 
defined as having the same origin, therefore, if XT is the 
position of the model center-of-mass with respect to 
inertial space, XT = V , t  - X. This transformation to 
a medium fixed velocity reference is necessary since 
aerodynamic forces are functions of the angle-of-attack5 
and dynamic pressure, q = M pVz, both of which are 
based on the relative velocity between the medium and 
model. 

'V, is the steady flow velocity in the wind tunnel and is there- 
fore constant. 

'The angle-of-attack is defined as the angle between the relative 
velocity vector and the model centerline. 

-=f 
I F#TH WITH RESPECT TO FREE-STREAM 

\TUNNEL J 
3: N 0 T E : F . G  ,yT ARE INTO PAPER 

Fig. 3. Axes systems 

6. Aerodynamic Forces and Moments 

According to the first-order linear theory, a body ex- 
hibiting XZ planar motion will be acted upon by the 
following aerodynamic forces and moments: 

5 



JPL TECHNICAL REPORT NO. 32-544 

In these equations, all coefficients of a, &d/V, and id/V are constant. The nature 
of the stability derivatives due to & and 6 are now considered. If a body is con- 
strained so that the acceleration in the Z direction is zero then a = e and & = 8. 
On the other hand, if the body is constrained in 8, as in the case of a plunging 
body, the 0 time-derivatives will be zero (Ref. 1). It follows that for bodies trav- 
eling at high velocities and oscillating rapidly: which is the situation being con- 
sidered, i = Employing this qualification, the moment equation and Z force 
equations can be written as follows: 

F y , , , = q A d [ F ] a  + q A d  ) 
a a j o  

Also, as shall be shown later, the force, Fz ,  has only a second-order effect on the 
amplitude of oscillation; only a negligible error will result if the coefficient of e 
in this equation is neglected. 

Since the analysis to be presented will not be limited to small disturbances, 
where only the linear approach is applicable, the previously described force 
equations are inadequate and a more general set must be employed. Coupling 
the preceding discussion with what experience has shown to be the aerodynamic 
forces and moments of measurable consequence, the following set will be used 
in the analytical development: 

'In the sequence of Fig. 1, the frequency of oscillation is about 60 cps and V 2,300 ftlsec. 

. .  
'Considering first-order effects (I = e - - - ] e and e = eo cos ( a t ) ,  therefore 

eo cos (a t ) .  Typically a is in the order of 250 radians/sec 

[ F] is in the order of 2 X lo3 ft/sec'. For high velocities the e' term (first term) 

,$ [ 
a = - Boasin (at)  - 

q A  aZ 
and 

completely dominates the value.of except for a very short interval of time at at = nr. Fur- 
thermore, time integrating the (I equation over acycle of motion for the case when V = loa 
ft/sec, indicates that the e' term contributes better than 99 percent of the total. 
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- 
Cx, C z  and C, are functions of the angle-of-attack; C, is the effective constant value of 

C. Approach 
The criterion in designing the model and subsequently 

releasing it in free-flight is to obtain planar, vertical 
motion. The model's constraining wire passes through the 
model axis at some initial angle-of-attack. The wire hole is 
several thousandths of an inch greater than the wire; the 
model is prevented from sliding up and down by a pair 
of lugs. When flow is established, it tends to align and 
stabilize these axially symmetric models in the XZ plane. 
During a normal release this alignment is usually main- 

tained; however, the process of releasing the model may 
contribute initial angular and translational velocities. In 
addition, when the model's center-of-mass does not lie on 
the model axis, nonplanar or nonsymmetrical motion will 
result. This report will present two solutions to the pro- 
posed problem: (1) a detailed solution of the planar mo- 
tion case and (2) a general solution which must, by its 
very nature, be an all encompassing computer-type 
solution capable of accommodating all kinds of misalign- 
ments. and initial velocities. 

7 
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111. GENERAL MOTION ANALYSIS VIA NUMERICAL METHODS 

- 
To determine Cmq, in the general case, the motion of the model is calculated 

with a solution of the complete six-degree-of-freedom equations of motion, via 
numerical methods. This solution requires that the static aerodynamic coefficients 
Ca, CN, C ,  be known. This Section is a formulation of these equations and their 
extension to a computer program. 

A. Generul Equufions of Motion 
Figure 4 shows the model in three-dimensional space. X,, Y,, 2, is again a 

Cartesian axes system$Ld-at the model center-of-mkss,-movJng parallel to the 
medium-fixed system X, Y, 2, and the inertial system XT, YT, ZT. Angles +, 0, and 
+ are Euler angles, el, e*, e3 are orthogonal body axes whose origin is the center- 
of-mass. e, ,  e,, e3 are the corresponding unit vectors. Since system X,, Y,, 2, is 
parallel to the inertial system, the following transformation, describing the angular 
motion of the body in terms of inertial axes, can be written. 

A A A  

cos 0 sin + 
cos e sin + sin e sin + sin + + cos + cos + sin e sin + cos + - cos + sin 1 [ 
- sin 0 

sin f3 cos + sin + - sin + cos + sin B cos + cos + + sin + sin + 

cos 0 sin + cos e cos + 

This matrix will be denoted [A-'1, i.e., [e] = [A] [X,]; it should be noted that 
this is an orthogonal transformation, therefore, [A-'1 = [AT]. 

The translational motion of the center-of-mass with respect to the medium is 
given by the following equations: 

R = X j i + Y P + Z 2  

ii = ri? + ri: + 22 
; = zx" + y ?  + 22 

Note that the acceleration, R, with respect to the medium is the acceleration with 
respect to inertial space since V, is a constant. 

The total angular velocity of the model with respect to inertial space is 

- A A A = o1 e, + o2 e, + o):~ e3 

2; = (4 - sin 3 el + (e' cos + + $ cos e sin +) 

+ ($ cos e cos + - e'sin +) C3 

8 
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Fig. 4. General motion axes system 

Assuming that the principal axes are coincident with the body axes, the angu- 
lar momentum and angular accelerations are 

A small error will result in the solution for those cases when the center-of- 
mass is offset from the model centerline. However, since these offsets are prac- 
tically only aberrations of small magnitude, the error produced by the cross 
product quantities will be negligible." The effect of the offset will not be ne- 
glected for the moment calculations later. 

"In severe cases, this error could be eliminated by including the cross product ternis; this would 
increase the complexity of the integration routine. 

9 
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From the velocity equation and matrix [A] a set of body axes velocities ul, uz, 
and u3 at the center-of-mass can be obtained. Letting r be the center-of-mass 
offset with respect to the body, the velocity at the geometric centroid can be 
calculated (see Fig. 5):  

v, = vc,m. + 2; x T 

vc = (u, + 0 2  E 3  - 0 3  e2) 21 + (u2 - 0 1  E 3 )  & + (u3 + 01 E 2 )  2 
B, = u1 el + 0 2  6-2 + u3 e3 

- -  
- 

Knowing the velocity at the geometric centroid the angles relating the model 
centerline with the velocity vector can then be determined 

71 = tan-' pz + ": = total angle-of-attack 

= vertical plane angle-of-attack 0 3  a = tan-' - 
01 

= angle of side-slip 0 2  p = tan-' - 
0 1  

B. Aerodynamic Forces and Moments 

The static aerodynamic forces and moments are functions of CA, CN, and the 
c.P., wh,ich in turn are functions of 7 (see Fig. 5) .  In addition, since the analysis 
is restricted to axially symmetric bodies, the forces act through the geometric 
centerline and the total angle-of-attack and dynamic pressure are based upon the 
model velocity at the centroid. 

The aerodynamic driving forces are 
- 
F ,  = - CA qc A'& 

These forces and moments are converted to the inertial system by matrix 
[A-'I; a gravitational force in the 2 direction is then added. 

C. Angular Rates 
. .  

w1 = + - I/ sin 0 

= - i sin + + i cos e cos + 

1 0  
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/ 

Fig. 5. Offset center-of-mass and velocity diagram 
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or in matrix fm: 

The moments are 

'sin O 0 1- 

cos Osin + cos + 0 

(F2 E3 - F3 €2) $1 

- 
M, = {F3 (c.p. - c.m.) - F ,  

M3 = { - F2 (c.p. - c.m.) + F ,  

+ M2,} c2 
A - + M3,} e, 

where the M D  terms are 
- 

0 2  
- C ,  qAd2  

q2 v, MzD - 

- - 
C, and C, are functions of a and p, respectively. 

92 93 

The inverse transformation is 

- sin+ cos + 

COS e - cos e sin + cos e sin+ ] [!! 
- sin 0 sin + - cos 6 - sin 0 cos + 

- -  
This matrix will be denoted [B-'1 . 

D. Numerical Integration Procedure 

The preceding motion equations are solved with a computer by separating 
time into very small finite intervals, 6t, and integrating. As an example, consider 
the M, component of moment, 

- Mi 0 2  0 3  
0 1  - - + - ( I 3  - Z2)  

I ,  I ,  

During the short interval of time St, the terms on the right side of the equation 
will be considered constant. 

1 2  
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Therefore, 

and 

Considering all components, 

or 

[ = [ ]  + [B-l]  [ 
803 

n 6 t  (-1) 6t 

Note: 

E. Discussion of the General Motion Analysis 

Figure 6 shows a computer flow diagram which links 
the previously formulated equations and the integration 
scheme into a usable general motion computer program. 
Three examples from the computer analysis are presented 
here to describe typical free-flight motion. All three 
examples are for motion of the model shown in Fig. 1, 
released at 8 = 60 deg. Different initial conditions were 
used for each example. The static aerodynamic coeffi- 
cients used in these examples were obtained from wind 
tunnel tests (Ref. 5);  a E, value of -0.1 was used in the 
computations. 

In the first example, the center-of-mass lies along the 
model centerline and the model is released smoothly, as 
would be the condition if the wire release mechanism 
did not impart any motion to the model. Figure 7 shows 
the Euler angle, 8,  versus the relative distance between 
the medium and the model, X. Included on the plot is 
the angle (8 - a), the difference between the Euler angle 
and the angle-of-attack, magnified 500 times. 

In the second example, at the time of release, the 
center-of-mass was placed at a position 0.084 base diam- 
eters to the right of the centerline (looking forward on 
the model) on the el e, plane (4 = 0). Immediately after 
placing the model in free-flight, the axial force acting 
along the geometric centerline causes a moment due to 
the offset resulting in body motion in the e, e, plane. 
Also, the normal force acting at the centerline causes 
rotational motion about the spin axis, el. The Euler 
angles, q, 8, 4, versus X are shown in Fig. 8. 

The third example depicts the motion resulting from 
an initial angular velocity, 4 (50 radianshec). This could 
occur if the wire release mechanism did impart some 
initial velocity. Immediately after wire release the e and 
q motions are out of phase because, at that time 0 = 0, 
and $ has a finite value. As time progresses, there is a 
coupling of motion and a continual change in the phase 
relationship. Figure 9 shows the Euler angles versus X 
for this example. Notice that the model motions resulting 
from both the offset center-of-mass and the initial yaw 
velocity ($) do not pass through the X axis, i.e., T ]  is 
never zero. 

The method of obtaining E, from the computer 
analysis is an iterative procedure. First, the motion is 
determined for E, = 0. Estimates of initial conditions 
required to cause the nonsymmetric motion are made. 
Using these estimates, the motion is computed and com- 
pared with the experimental data. If necessary, new 
values are tried and this process is continued until reason- 
able agreement is reached. Then, the motion for several 
values of E, is computed and, subsequently, a correlation 
between decay per cycle and cq is developed. In this 
manner, the correct cq, corresponding to the experi- 
mental decay, can be obtained. This procedure is costly 
and time consuming and, occasionally, the motion is so 
complex as to defy solution. It is anticipated that the 
technique for placing the models into free-flight will be 
advanced to the point where the planar solution, pre- 
sented in the next Section, will be applicable in most 
cases. 

1 3  
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P =  I 5 x  IO-^ slugs/ft 

= 1.2 x  IO-^  SI^ s f t 2  

d = 0.003 ft 
XO = 2.23 X IO3 ft/sec 

Z2= Z3= 1.3 X IO-' i u g s - f t '  

100.0 

80.0 

FEET 

Fig. 7. Smooth model release 

I20.0 I m.6.5 X slugs 
P = 1.5 x  IO-^ siugs/ft. 

= 1.2 x 10-7 slug-ft.2 

d=0.083 ft. 
Xo=2.23 X IO3 ft./sec. 

i2 = = 1.3 x 10-7 siug-ft? 

IOO.0 

80.0 

FEET 

Fig. 9. Initia! angular velocity in yaw 
plane (& = 50 radian/sec) 

120.0 
m.6.5 X slugs XO= 2.23 X IO3 ft/sec 

d =0.083 f t  
p = 1.5 x  IO-^ slugs/ft I ,  = 1.2 x  IO-^ s~ f t 2  

Z 2 = f 3 =  1.3 X IO3s;ugs-ft2 

FEET 

Fig. 8. Center-of-mass offset (0.084 diameters 
from centerline in yaw plane) 

15 
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IV. ANALYTICAL SOLUTION OF PLANAR MOTION 

(3) 
If a model is placed into free-flight without any initial 

velocities, and its center-of-mass is along the geometric 

planar. In this Section, planar motion will be thoroughly 
investigated and a non-numerical technique for analyzing 

.. 1 
2 mZ = - -pV2ACz  + mg 

centerline, the resultant motion may be considered 
- 
V =  iX^+iz^ 

the motion will be developed. For simplicity, motion in 

plane is assumed to coincide Tith the X,Zm plane. At 
to - 0, the velocity is = V ,  X, and the model is at an 
initial “cock angle e,. The model is released at to and, 
subsequently, at to + 0 it is in flisht. The requirement of 
no initial velocities means that 2, and Yo are zero at to 

the XZ plane will be considered (see Fig. 3). The XZ 
A r\ A A  
V O X  = cos ( 0  - a) andAV*Z = sin,(% - a). Since 
( e  - a) is very small, v * X  s 1 and V*Z s (e - a). 
Therefore, 

and, also, that the angle (a - e )  must be zero at to. X = V  (4) 

i =  -v(e-a)  (5) 
A. Planar Motion Equations 

The prime aerodynamic forces7 acting at the center-of- 
mass are 6. Solution Assuming the Vertical Acceleration 

is  Zero f0 = aJ 
Equation (1) is not directly solvable because V and C, 

are variables. However, when C, is a linear function of 
a, namely Cm,a, and the coefficient Cx is constant, Cxo, 
then the independent variable can be changed from time 
(t) to distance (X) by employing Eq. (2) and (4) and 
modified Eq. (1) will then be linear. This transformation 
is shown below: 

de dX = -- = 
dX dt 

1 1 
2 2 

My, = - p V 2 A C ,  + - p V 2 A d C ,  

The analysis presented here requires that the static co- 
efficients, C x ,  Cz, and C, (which are functions of a), be 
known to a reasonable degree of accuracy. This informa- 
tion can be obtained from static experiments or by ap- 
proximate theoretical methods. The equations of motion 
are 

= i z  ,ti + 2 ,gr 

But = v, and 

(1) 
.‘ 1 1 

2 2 
I O =  - p V 2 A d C , + - p V 2 A d c  9 (t) 

1 mX = - - p V 2 A C x  
2 

.. 

I ‘See Section I1 B. 

, 16 

.. pV2A x = - -  
2m “0 

Therefore, 

e’ = erv 



JPL TECHNICAL REPORT NO. 32-544 

Equation (1) now becomes 

Dividing by V 2  and rearranging, 

Equation (8) is a second-order homogeneous differential equation with constant 
coefficients. For stable models, i.e., C, < 0 (which is the only situation being 
considered), the well-known solutions is 

e = 0, e-AX cos (,X + 

where 

- A = -  PA [ C ' o + ( T ) C " q ]  md' - 
4m 

Listed below are representative magnitudes of the terms in this equation 
(Ref. 6): 

- 
= 1 x 10-~ slug/ft3 m = 1 X slug Cmq = -0.1 

d = 0.1 ft 

A = 0.01ft' 

I = 2 x 10-'slug-ft' cx, = 1.0 

c,, = -0.1 

Inserting these values into the above expression, the following is obtained: 

C,, = 2.5 X lo-' P A d  -- 
21 ft' 

'If it is assumed, in addition, that the force coefficient in the Z directionis alinearfunction 
a, i.e., Cs, a, and the angle-of-attack small such that sin a = a and co6 a = 1 then the following 
linear solution can be obtained: 
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In general, 

-- PAdC, .>  > I g (Go+ [TI q)I‘ 
21 

Since Cx, is always positive, a converEnt 0 envelope 
can only be produced by a negative C,. The actual 
effect on the motion by Cx, is that of recfucing the V2 
term and consequently weakening the static restoring 
moment 1/2pV2AdC,. The decrease in V per cycle is 
usually in the order of 2 percent or less. From an energy 
consideration, more energy is converted from potential 
energy to kinetic energy as the model oscillates from the 
initial angle to zero (first quarter cycle) than is converted 
back to potential energy when the model reaches minus 
the initial angle. In order to balance the energies, the 
model will oscillate an additional increment 66, tending 
to cause divergent motion. 

Equation (11)  states that frequency is a function of C, 
for the special case considered. This result can be ex- 
tended to the general case by considering the physical 
contribution, on the oscillatory motion, of all the other 
coefficients, viz, Cx, Cmq, C,. As already described, Cx 
reduces the potential energy slightly, by reducing V2;  -cq appears as a friction term in the equations which 
dissipates a rather small amount of energy, and Cz, as we 
shall see later, increases the potential energy slightly if 
aCz/act > 0. All these coefficients have a prominent 
effect upon the amplitude of oscillation but a relatively 
second-order effect on the oscillatory frequency. The 
assumption will be made, now, that frequency is a func- 
tion of C, only. 

C. Nonlinear Versus Linear Pitching Moment 

In order to solve the general planar case and under- 
stand what errors would result by assuming linear 
aerodynamics, it is necessary to investigate the motion 
resulting from nonlinear pitching moments and compare 
this motion with that resulting from linear pitching 
moments. Neglecting all terms except the pitching mo- 
ment, and changing the independent variable from time 
to distance, Eq. ( 1 )  can be written 

1 8  

or 

and 

8’ de’ = kM C, ( e )  de + constant (13) s s  
Two cases will be considered: the linear case (case A),  
C, ( e )  = Cma 8; and the nonlinear case (case B), repre- 
sented by the family of functions C,(e) = M ,  sin (re) .  
The segment of the oscillation being investigated is that 
portion of the motion as the model oscillates from e = 0 
deg to e =  e,, the maximum angle, 

1. Case A 

When e = e,, e’ = 0. Therefore, 

(ignoring the sign for the present) 

and 

or 

1 / 2  

2. CaseB 

a. c,(e) = M 1  sin 8; M ,  < 0 

-- e’’ - -k, M ,  cos 0 + constant 2 

when e = Bo, 8’ = 0. Therefore, 

- ( - 2  k, ~ ~ ) 1 / 2  (COS e - COS eo)1/2 
de 
dX 
-- 



~~~ ~~ 

JPL TECHNICAL REPORT NO. 32-544 

And 

This equation can be put into a more usable form by 
making the following substitutions: 

Then, 

and 

8, a = s i n -  
2 

e sin - = a sin + 
2 

The integral on the right is the standard form of an ellip- 
tical integral of the first kind; tabulated solutions are 
readily available (note e, 2 e). Therefore, 

b. The general case, C,(e) = M, sin (re), has the 
following solutions: 

(COS [ re]  - COS [ r e o l ) 1 ~ 2  (16) 
de - ( -2 Mr)“’ 
dX 

where 

re, re 
2 2 

a = s i n -  and sin - = a s i n +  

Using the preceding results, the following ratios can be 
formed: 

where 

As a basis for comparing the linear and nonlinear mo- 
tions, the distance period of oscillation will be equal for 
both cases. Therefore, for a quarter cycle, Eq. (19) is 

or 

where F e u  is the complete elliptical integral. This con- 
stant is plotted in Fig. 10 for r = 2/3, 1, and 4/3. 

Physically, this constant designates the sine curve 
necessary to replace the linear moment by a sine-shaped 
moment and still maintain the same frequency of oscilla- 
tion. Assuming that locally en is a slight perturbation of 
81, the following approximate angle ratio can be written 

where 

and XJX, is obtained from the local O Z  and Eq. (19) and 
(20). Plots of e:/ei XJX,, and &,/el for various r’s and 
6,’s are shown in Fig. 11 through 15. 

1 9  
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\ 

I .9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

I .c 

AMPLITUDE OF OSCILLATION eo, deg 

Fig. 10. Ratio of sine designator, M,r, to linear pitching 
moment slope vs amplitude of oscillation 

These ratios represent errors that would result if a 
body possessing a sine curve pitching moment were 
analyzed with a linear pitching moment. At distance X 
the linear solution predicts that the model will be at 
some attitude 81, but since it is under the influence of a 
sine curve pitching moment it is actually at angle 8%. 
Consequently, the aerodynamics acting (Cz, Cr, C,) are 
not those for 81, but are those corresponding to 0,. As an 
example, consider the model shown in Fig. 1 oscillating 
a quarter cycle from 0 = 0 deg to e = 90 deg while it 
travels a distance X = T/4. The aerodynamic coefficients 
of this body are obtainable from Ref. 5. When the non- 
linear model has reached the angle e = 20 deg, the linear 
model will be 20 deg divided by e,/el. Assuming r to be 
about one, the ratio 8,/d1 is obtained from Fig. 15, i.e., 
8,/61 = 1.06. Therefore, en = 18.9 deg. The resultant 
errors can be determined by comparing the coefficients 

20 

for these respective angles. The errors in CN and CA 
respectively are 5.5 and 0.4 percent. 

- The dissipative energy at any instant is proportional to 
Cmqei, and for a small portion of the oscillation it is 

AE = k c p  9’Ae 

Assuming that e: is a small perturbation of 8 :  the per- 
centage error resulting from using el, can be written 

By extension, the percentage error over a quarter-cycle is 

yo (2 - 1) e:  de 

% E =  reo e ;  de 
JO 

I O 8  

1.06 

1.04 

I O 2  

1.00 

0.98 

0.96 

0.94 

INSTANTANEOUS ANGULAR POSITION 8, deg 

Fig. 11. Ratio of nonlinear to linear angular rates vs 
the instantaneous angular position for r = 1 
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I 0 7  

I06 

I 0 5  

1.04 

I 0 3  

I 0 2  

I O 1  

I O 0  

I INSTANTANEOUS ANGULAR POSITION 8. de9 

I 
I Fig. 12. Ratio of the linear to nonlinear translational 

position vs the instantaneous angular position 
for r = 1 

I 

1.14 

1.12 

1.10 

1.08 

?I L: 
I .06 

I .04 

1.02 

1.00 

INSTANTANEOUS ANGULAR POSITION 8,  dog 

Fig. 14. Ratio of the linear to nonlinear translational 
position vs the instantaneous position 

for Bo = 90 deg 

INSTANTANEOUS ANGULAR POSITION e, de9 

Fig. 13. Ratio of nonlinear to linear angular rates 
vs the instantaneous angular position 

for Bo = 90 deg 

1.14 

1.12 

1.10 

1.08 

1.06 

1.04 

1.02 

1.0c 

Fig. 15. Ratio of the nonlinear to linear angular 
position vs the linear angular position 

for Bo = 90 deg 

2 1  
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Employing Eq. (14) and (18), the above error equation reduces to the following: 

(2y2 S . ” O  {cos [ r e ]  - cos [ r 8 , ] } ’ / *  -“/4 8; 

As an example, for the case when T = 1 and B o  = ,/2 the percentage error is 
about +5 percent. This means that for each quarter cycle of oscillation 5 percent 
more energy is dissipated with the sine curve pitching moment than the corre- 
sponding linear pitching moment. Using the improper pitching moment results 
in using the wrong instantaneous values of 8 and 8’ and, consequently, applying 
the wrong forces and moments. 

The choice of using the sine curve for the nonlinear analysis was not as arbi- 
trary as it might appear. It has been observed that many of the symmetrical 
configurations have moment curves which can be approximated by sine curves. 
Figure 16 shows some representative bodies and the corresponding moment 
curves obtained using the Newtonian Impact Theory (Ref. 6). The plots indicate 
that the computed pitching moments can be adequately replaced by a sine curve. 
In order to determine the proper sine curve, it is necessary only to specify a value 
of T .  From the experimental data, a is obtained, i.e., = 2,/T, where T is the 
distance period (ft/cycle). Cmo is then available from Eq. (ll), and M, is com- 
puted from Eq. (20), or obtained from Fig. 8. 

.. D. The Effect of Vertical Motion 

effect of this small angle on the motion can best be described by sketch A. 
Equation (5) indicates that the integral of 2 produces the angle (8 - a). The 

STEP I STEP 2 STEP 3 

VERTICAL POSITION 8 

Sketch A 

22 



~ ~~ ~ 

JPL TECHNICAL REPORT NO. 32-544 

-0  28 

-0  24 

-0 20 

-0 16 

5 -012  

-0 08 

-0 04 

0 

0 10 I 

0 0 4  

a .  deg 

Fig. 16. Pitching moment curves obtained from the 
Newtonian Impact Theory 

A model possessing a aCJ& > 0 is released at step 1 
and oscillates to step 2. At the same time, the model is 
at a positive angle-of-attack and subject to an upward 
aerodynamic force producing an upward velocity. At 
step 2, the apparent angle-of-attack is zero; in actuality, 
it is -a, as shown. This deviation from the apparent to 
true angle-of-attack produces a small additional restor- 
ing moment which tends to decrease the angle-of-attack 
envelope. Basically, each instant the potential energy is 
being increased by an amount proportional to (6 - a). 

1. Obtaining (e - a) 
The correction resulting from this angle is not the 

prime contributor to damping, but it must not be ignored. 
However, reasonable latitude in solving for this angle can 
be accepted without introducing appreciable errors into 
the total solution. The following assumptions will be 
made: 

1. Cz is a function of e 
2. C, is in the form of M, sin (re) 

3. X is a constant X, 

Equation (3) is 

(3) 

But, 

i = Z ' i  

. .. 
By the assumption of a constant X, X = 0 and Eq. (3) 
now takes the form 

g - -kz C,(e) + - dZ' -- 
dX xi 

where 

PA kz = - 
2m 

By assuming that C ,  is in the form M ,  sin (re),  

During the first half cycle of motion, 8' is negative. This 
can be seen by differentiating Eq. (9). If n is defined as 
the experimental angular frequency, then, according to 
Eq. (ll), there must be a linear moment coefficient, 
C,,, such that 

For the first half cycle, 8' can be rewritten as follows: 

Combining this last equation with Eq. (3a), 

Integrating and noting that Z', is zero, the following re- 
sult, valid in the first half cycle, is obtained: 

23 
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It should be noted that the last term may also be written g X / X i  by a direct inte- 
gration of Eq. (3a). By changing the independent variable from time to distance, 
Eq. (5 )  can be restated as 

or 

a = e + Z ’  

E. General Planar Solution 

Restating Eq. (l), with distance as the independent variable: 

Multiplying through by 8, 

Cx a d  C, are both functions of a. However, assuming that Cx is a direct func- 
tion of e results in a negligible error. A similar assumption for C, will noticeably 
disrupt the energy balance. Therefore, C, will remain a function of a, i.e., the a 
obtained in Eq. (22). Equation (23) now takes the form 

And 

24 
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Integrating over the first half cycle of motion from Bo to - (e,  - se), Eq. (24) 
becomes 

At the peaks, 0, and 

- (7) 

This general solution can be put into a more useful form if the following assump- 
tions are made: 

1. cm (a) = c, (e  + z’) = c, ( e )  +- z’. Since 

Z’ is always a small angle, this approximation is 
quite good. 

de 

- M,r cos (re). This assumption is based on dC, 2. - - 
de 

the premise that C, can be replaced by a sine curve, 
M, sin ( re) .  

3. And, for the same reason, 

e’ = -a [ ( 2 / r )  (M,/C,a)]1/2 {COS (re,) - COS (re)}i/z 

Note that the assumption C, = M, sin ( re )  is only applied to the second order 
effects Cx, Cz,  and C y .  No restriction is placed on the prime moment function 
Cm(e). 

Employing these assumptions, the terms in the general solution can be 
modified. 

25 
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Therefore, 

+ M , * r  [ " Z' cos ( re) de 

The first term is zero because of model symmetry. For small 68, C,,(e) can be 
considered constant, and the second integral reduces to 

c, (e,) de = - c, (e,) 60 s-io(eo-se) 
Then 

Inserting the above modifications and the 8' assumption, the general equation 
can be restated in the modified form: 

- {C, (e,)-se + M , * r  Z' COS ( re)  de}  - 

{ C O S  (ro)  - COS (reo)}1/2 dB 

cx (e) {COS (re) - COS (reo)}l/z dB 

Cm* = (26) 

S-B;s,-se) 

Usually, 68 < < B o ,  and the lower limit can be changed from -(eo - 80) to -0,. 

F.  Applications 

The angle-of-attack envelope, and consequently the coefficient of a body 
possessing linear aerodynamics can be determined exactly from a solution of the 
linear differential equation of motion (see footnote on page 17). It is desirable to 
solve the general solution, Eq. (25), assuming linear aerodynamics, and compare 
it with the exact solution. 

The condition of linearity is: 

From Eq. (3a), ignoring gravity, 

dZ' = -kz CZa6 dX 

26 
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From this equation the damping coefficient is 

1. At the first half cycle, 

3. Expandingln - is a series, (lo) 

For a body such as a cone the decay rate, 6a/ao, is in 
the order of 0.05, whereas for the blunter bodies it 
will be closer to 0.02. If only the first term in the 
series is used, these decay rates correspond to errors 
of 2 and 1 percent, respectively. 

Combining the above and substituting - 
- 

the following solution for Cm, is obtained: 

6a 68 
a0 eo Since - is almost identical to - , it follows that the 

two approaches yield almost identical results. 

Generally, the aerodynamic coefficients are not linear, 
and numerical integrations are required to solve the 
terms of Eq. (26). However, for the purpose of demon- 
strating the technique, an example has been chosen 
which lends itself to the more conventional integration 
methods, and yet is representative of nonlinear motion. 
Consider a configuration whose aerodynamic coefficients 
are described by the following equations: 

C N  = N sin a 

(This set of coefficients corresponds favorably to the 
model in Fig. 1.) The body is released at Bo = s/2, and 
after a half cycle the motion has decayed an amount 
68 (68 < < s / 2 ) .  During the half cycle, the body has 
traveled, with respect to the air flow, a distance T/2 .  

1. Preliminaries 

2s a. a=- 
T 

b. The ratio &f/C,, is obtained from Fig. 10 using the 
parameters r = 1 and Bo = 90 deg. 

Sketch B 

Cz = C N  COS 8 - CA sin 8 

= N sin 8 cos 8 - A cos 0 sin 8 

= ( N  - A) sin 8 cos 8 

Cx = C N  sin 8 + CA COS 8 

= N sin2 8 + A cos2 8 = N - ( N  - A) cosz 8 

2. Obtaining Z’ 
The effect of gravity will be neglected in this solution. 

2‘ is obtained from Eq. (21) and the above information 
as follows: 

28 
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- 
3. Obtaining Cmq: 

The modified solution is 

a. 

but 

therefore, 

2 kz (N - A) 
Z' COS e de = - - SI 

29 
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b. 

3(N - A) 
5 cos'/2 e de 0 de - 

c. It can be shown that 

The solution contains complete elliptical integrals of the first and second kind. 
- 

Combining the terms, the final solution for C,, is 

where 

4. Numerical Solution 

In order to verify that Eq. (27) is correct, a hypothetical case was formulated 
and its motion calculated by the computer motion program. Below are lists of the 
computer inputs and the predicted decay and frequency. The computed motion 
is shown in Fig. 17. 

30 
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FEET 

Fig. 17. Computer motion for hypothetical numericai soiution 

a. Inputs 

Aerodynamic coefficients : 

C ,  = 0.7 COS a 

C ,  = 1.1 sin a 

C ,  = - 0.18 sin a 

Constants: 

I ,  = 1.8 x 10-7 siug-ft* 

m = 7.0 X lO-'sIug 

d = 8.0 X 10-2ft 

p = 7.0 X slug/ft3 

3 1  
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Initial conditions: 

X, = 4.0 X lo3 ft/sec 

e, = 

32 

> 
~~ ~ 

b. Outputs 

68 = 0.695 deg E 1.213 X 

n = 0.10062 rad/ft 

rad 

Using the computer inputs and results, Eq. (27) was solved: M / C m a  is ob- 
-- 

tained from Eq. (20), for T = 1, c - 1.393 
ma 

Experimentally, = 0.10062 rad/ft; from Eq. (ll), n2 = k, Cw,a. 

k, = Ad - (7.0 X m5) (8.0 X 10-2)3 1 
21 qi .8  x 10-7) ftz ft2 

- -  = 0.07819 - 

( 0.10062 -) 1 2  
ft 

c m a  = 1 = - 0.1296 
I 

0.07819 ftz 

Using this ratio for M/Cma,  M = - 0.1805. The value of M used in the com- 
puter analysis was - 0.1800. This 0.25 percent deviation is primarily due to 
the second-order effects and slightly due to the small intrinsic error of a computer 
operation. To duplicate the reduction of actual free-flight data, the value M 
= - 0.1805 will be used. 

Eq. (27) is: 

4 8 
= - -  (1.8541) + - (1.3506) = 2.396 

f 2  P 
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(7.0 X (8.0 X d 4  1 1 
2m ~ ( 7 . 0  x 10-4) ft ft 

_ -  - 2.513 X lo-* - kz=-- PA - 

= (2 X 1.393)1/2 = 1.669 (5) 1'2 

\ 

2kz(N-A)  M -0.1805 2(2.513 X (0.4) (0.1805) 
(1.213 X 5(0.100s) (1.669) + M - 80 - 

E 2.396 1 
= { - 0.09136 X le2 + 0.00432 X = - 8.704 X lo-' 

r ! =  (-008.704 x 10-4) 
-'nq (1.669) (0.looS) (8.0) 

(1.8 x 10-7) - 
(7.0 X lo-.) (8.0 X 1C2)2 

Since the input value was -0.lOO0, this is an error of 
0.6 percent. Most of this error is the result of neglecting 
gravity. A superficial verification of this is obtained by 
evaluating 2' at its maximum value when 0 = 0 deg. 
Neglecting gravity, 2' = 0.0228 deg; including gravity 
Z' = 0.0210 deg, which is a decrease3 10 percent. Since 
the Z' term reduces the solution of Cmq about 5 percent, 
the gravity term9 will increase the final value approxi- 
mately 0.5 percent and reduce the small error even uc '0.10 

further . 

0.20 

0.15 

This high accuracy may be due to the fact that the 
example problem corresponded exactly to the assumption 
made in the derivation of the general equation, namely, 
that C, = M sin 0. To discount this argument, the fol- 
lowing cases were considered: the original moment curve 

0.05 

0 

'The gravity term is obtained from Z: = (gX/X:), where X was 
obtained from the computer output. This Z' value at e = 0 
agrees exactly with the computer results. 

8, deg 

Fig. 18. Perturbated moment curve 
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~ Error (including a -0.: 
percent shift due 

to gravity), Yo 

(curve A) was perturbated into curves B and C as shown 
in Fig, 18. There is no consistent pattern relating the 
three curves except that the area under each curve is 
about the same, and the index r is 1 in each case. Holding 
all else constant, the motion was computed for curves B 
and C, and the CmP)s were calculated for each case from 
Eq. (27). 

Decay, 
deg 

0.695 

0.715 

0.707 The respective decays per half cycle, E>, and errors 
are listed as follows: 

- 
c% 

- 0.0994 
- 0.1014 

- 0.1003 

0.1 

- 1.9 
- 0.8 
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V. CONCLUSION 

I 

I ' 
1 
I 

- The determination of the dynamic damping parameter 
Cmq, from wind-tunnel free-flight data, requires an accu- 
rate solution of the equations for the model attitude dur- 
ing flight. A basic premise employed in formulating the 
solution presented is that all forces, except the damping 
force, are known. For purposes of analysis, the free- 
flight motion is separated into two categories: planar 

metry, and nonplanar motion, due to some sort of 
anomaly. The latter situation can be handled with the 
general motion computer program. However, the reit- 
erative process involved could become rather costly and 
time consuming and should be avoided. Models demon- 
strating planar motion can be analyzed with the equa- 
tions developed herein. These equations were formulated 
on the premise that the instantaneous trequency of oscii- 
lation is essentially a function of the pitching moment; 
and, that this frequency is obtained by assuming that the 
nonlinear moment can be represented by a sine curve. 
Similar analyses could be performed with other nonlinear 
moment curves such as a power series representation. A 
sine curve was chosen here because it adequately repre- 
sents a large number of configurations as indicated in 
Fig. 16, and also because it lends itself well to analysis. 

I motion, resulting from a smooth release and mass sym- 

The examples demonstrate the validity of the approach. 
The first example considers linear aerodynamics; the 
superb correlation between the solution using the devel- 

oped equations and the exact solution of the differential 
equation verify the correctness of the formulation. The 
second example considers nonlinear aerodynamics. The 
numerical solutions of the nonlinear problem considered 
demonstrate the validity of this approach and indicate, 
as expected, that solution accuracy decreases as the ac- 
tual pitching moment curve deviates from a sine curve. 
I t  appears, however, that the effect of deviations in the 
C, curve is noticeably attenuated in the final result, and 
the total accuracy is still quite high (even when the de- 
viation is substantial). It is expected that this solution 
will, in general, yield results accurate to within &5 
percent. 

The solution offers the additional advantage of provid- 
ing a basis for interpretaiing the relative importatice of 
each of the parameters. For instance, in the numerical 
solution of the second example (Case A), the Z term con- 
tributed about 5 percent to the solution, Cx about 35 per- 
cent, and 80 about 60 percent. If another body of not too 
dissimilar aerodynamics exhibits a 68 twice as great, 
certainly a good approximation to the solution could be 
obtained from just using the 80*Cm(6,) term. Also, by 
replacing Cz with an approximate equation, its approxi- 
mate effect on the total solution could be determined. If 
it is small, this approximate solution will be all that is 
necessary. It is conceivable that solutions for families of 
C i s  and Cz's can be obtained and serve as a guide, if not 
the complete solution, for an arbitrary planar case. 
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A 

c.m. 

c.p. 

cm, 

NOMENCLATURE 

reference area corresponding to maximum body diameter, d 

distance from the nose of the model to the center-of-mass 

distance from the nose of the model to the aerodynamic 
center-of -pressure 

dynamic damping parameter, 

linear pitching moment slope, per radian 

aerodynamic coefficient in the X direction at zero angle of attack 

dimensionless aerodynamic coefficient; subscripts are as follows: 
A, axial force, acts along body axis; N ,  normal force, acts normal to 
the body; X, acts parallel to the inertial X and opposite in direction; 
2, acts parallel to the inertial 2 and opposite in direction; m, pitch- 
ing moment 

reference length - maximum body diameter 

an orthogonal body axes system fixed at the center-of-mass r (1 - a2 sin2 +)lI2 

aerodynamic forces along axes el, e,, e3 

gravitational acceleration 

moment of inertia about the Y axis 

principal moments of inertia along axes el, e2, e3 

d+ 

- PAd 
21 

PA 
2m 
mass of model 

maximum value of the sine curve pitching moment of index r 

aerodynamic moments along axes el, e2, e3 

computer integration index number 

maximum n 

dynamic pressure, % pV2; qc is based upon V, 

index denoting the angular position when maximum pitching 
moment occurs. 

- 
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- r vector from the center-of-mass to the geometric centroid 
(see Fig. 5)  

t time 

6 t  computer integration time interval; also small interval of time 

T distance period of oscillation, ft/cycle 

ul, u2, u3 components of velocity along e,, e2, e3 at the center-of-mass 

ul, u2, u3 components of velocity along el, e2, e3 at the geometric centroid 
(see Fig. 5) 

V velocity of model at the center-of-mass 

V, velocity of model at geometric centroid (see Fig. 5 )  

V, - free strea%veiociiy, i.e., &e sieady Zow in the .;*.kc! t.m:ne! 
v, = V,X 

an axes system parallel to XT, YT, 2, but fixed to the medium 
(see Fig. 3) 

X,, Y,, 2, an axes system parallel to XT, YT, ZT fixed at the model 
center-of-mass (see Fig. 3) 

XT, YT, ZT wind tunnel fixed Cartesian axes system, assumed to be an 
inertial system (see Fig. 3) 

a angle-of-attack in the vertical plane, tan-' 3 

B angle of slide-slip, tan-' 2 

N NN 

X,Y,Z 

" N  

N N N  

U 

81 

8 

81 

'1 total angle of attack, tan-' w 
01 

68 angular decay per half cycle 

p atmospheric density 

+, 8, + Euler angles (see Fig. 4) 

U) oscillatory frequency used in Eq. (ll), rad/ft 

3 angular velocity of the model with respect to inertial space with 
components 0,) 02, and o3 along the el, e2, e3 axes 

oscillatory frequency obtained experimentally, rad/ft 

(') (") first and second derivatives of ( ) with respect to time 

( )', ( )" first and second derivatives of ( ) with respect to X 

(-1 vector; also, the effective term cq 
(A)  unit vector in the ( ) direction 
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Subscripts 

1 linear 

,, nonlinear 

,, initial conditions 

30 
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